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Abstract

We study the performance and programmng effort for two major
classes of adaptive applications under three leading parallel pro-
gramming models. We find that all three models can achieve scal-
able performance on the state-of-the-art multiprocessor machines.
The basic parallel algorithms needed for different programming
models to deliver their best performance are similar, but the im-
plementations differ greatly, far beyond the fact of using explicit
messages versus implicit loads/stores. Compared with MPI and
SHMEM, CC-SAS (cache-coherent shared address space) provides
substantial ease of programming at the conceptual and program or-
chestration level, which often leads to the performance gain. How-
ever it may also suffer from the poor spatial locality of physically
distributed shared data on large number of processors. Our CC-
SAS implementation of the PARMETIS partitioner itself runs faster
than in the other two programming models, and generates more bal-
anced result for our application.

1 Introduction

Architectural convergence has made it common for different pro-
gramming models to be supported on the same platform. The three
common programming models are MPI, SHMEM and CC-SAS.
How these three programming models compare in terms of perfor-
mance and ease of programmability is not clear. Our previously
study [7. 8] has shown that for regular applications, using differ-
ent programming models for the same application greatly affects
performance as well as programming effort. In this paper, we will
focus on adaptive applications in which the computational domain
adapts to the evolution of the problem with time. Such applications
require dynamic load balancing and exhibit inherent irregular and
unpredictable access and communication patterns. They have be-
come increasingly important in scientific and engineering fields as
more complexed phenomena and domains are studied.
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Figure 1: The layered platform for comparison of programming models

Our overall research goal is to study this problem in a layered
framework that is shown in Figure |. For the application layer,
the applications selected should satisfy the following criteria: 1)

They should require dynamic, irregular fine-grain communication.
ii) They should have wide applicability to problem domains that
require high-performance computing. iii) They should require the
use of large numbers of processors. iv) They should not be trivial
to obtain scalable performance. Based on these criteria, we select
two typical applications Adaptive Mesh and N-body as our driving
applications. For each application, one or more programs for each
programming model is developed initially using leading known al-
gorithms. For rthe programming model layer, the two dominant par-
allel programming paradigms are message passing and a coherent
shared address space. There exists another programming model
called SHMEM which lies in between this two. In this model, each
process also has its own address space as in MPI, but the address
spaces are symmetric. The communication becomes one-sided but
still explicit. We will examine these three programming models
in our study. For the communication layer, here, we focus on the
tightly-coupled DSM multiprocessors. The platform we selected is
the SGI Origin 2000, which has an aggressive communication ar-
chitecture and provides full hardware support for CC-SAS model.
The MPI and SHMEM programming models are built in software
but leverage the hardware support for a shared address space and
efficient communication for both ease of implementation and per-
formance, as is increasingly the case in high-end tightly-coupled
multiprocessors.

In this abstract, our main focus is on the application layer. There
are two levels of consideration: algorithmic level and implementa-
tion level. We will examine whether the algorithms to deliver the
best performance for each programming model are similar or not.
If so, are there substantial differences in implementation level be-
yond just the fact of using explicit messages versus implicit loads
and stores, and how much performance difference can be caused
by them ? How does the conceptual and programming complex-
ity needed by different programming models for good performance
compare ? Lower-level considerations for the programming model
layer and communication layer are left for the full paper.

Several researchers have done some previous work related with
this problem. Singh et al find CC-SAS to have substantial ease
of programming and, likely, performance advantages for hierar-
chical N-body applications [9, 10} on machines like the Stanford
DASH. Dikaiakos and Stadel {1] studied the performance com-
parison of cosmological simulations between message passing and
shared memory implementation on Intel Paragon and KSR-2 ma-
chines and found that the shared memory program running on KSR-
2 outperforms the message passing program running on Intel Paragon.
These platforms have become quite dated. Oliker and Biswas [3}
examined the performance of a dynamic unstructured application
on three different programming models. However each program-
ming model was implemented on a different platform and perfor-
mance can not be easily compared across them. These studies do
not compare algorithmic and programming implications and their
conclusions are different from ours which uses a common high
performance platform with state-of-the-art implementation of the
programming models. We find that all three models can achieve
scalable performance on our platform. The algorithms needed by
different programming models for best performance are similar,



but the implementations differs greatly, far beyond the fact of us-
ing explicit messages versus implicit loads/stores. They are at the
conceptual and program orchestration levels. Compared with MP]
or SHMEM, CC-SAS provides substantial ease of programming.
which often leads to the performance gain. But it may also suffer
from the poor spatial locality of physically distributed shared data
on larger number of processors.

The rest of this abstract is organized as follows. Section 2 de-
scribes the applications we used and the programming differences
for them among the three models. Performance is analyzed in Sec-
tion 3. Finally, Section 4 summarizes our key conclusions.

2 Applications

In this section, we describe the algorithms for Adaptive Mesh and
N-body. Since SHMEM programs are similar to MPI programs
except for the two-sided versus one-sided communication, we only
discuss the algorithmic differences between CC-SAS and MPI in
this extended abstract. The complete discussion is left for the full
paper. The discussion is focused on parallel partitioning for data
locality and load balance.

2.1 Adaptive Mesh

The mesh used in our experiment is the one often used to sim-
ulate flow over an airfoil [5]. The flow-chart of the program is
shown in Figure 2. The initial mesh is partitioned and each process
is assigned a sub-mesh. Based on the sub-mesh, a corresponding
sub-matrix is generated by each process and fed into the solver to-
gether. After the solver, the mesh adaptor will mark the edges and
coarsen the mesh first. The refinement is delayed until after the
load balancer which is responsible for re-partitioning the mesh and
remapping the data. The following discussion highlights the stages
where there are and aren’t substantial differences in program or-
chestration due to the nature of the programming models, beyond
just using messages instead of loads and stores, even though the
same basic partitioning algorithms for load balance and communi-
cation reduction are used.
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Figure 2: The flowchart of the adaptive mesh

Load Balancer In MPI programs, we chose PARMETIS [3] as
the partitioner because of its good performance and availability.
This is a multilevel partitioner, including coarsening, initial parti-
tioning. and refining. The coarsening is implemented by heaviest-
edge matching. To find matching vertices for the boundary vertices
of a partition, a “try-confirm” stage is needed because if the maich-
ing vertex belongs to another process, the process has to send a
message to another process to check whether that vertex has been
matched by others or not. Then the sub-mesh has to be assembled
for the initial partitioning. During the refining stage, each process
will reconsider the ownership of its boundary vertices in order to
reduce edge-cut and further balance the load. Due to the lack of
globally shared data, the decision is made according to an inaccu-
rate local view since address spaces are private. After the partition-
ing. the data is re-mapped among the processes. Each process has
to break up its old sub-mesh and rebuild the new-sub-mesh. This
remapping is very expensive for larger data sets.

In CC-SAS programs, there is only one complete mesh main-
tained by all processes. The “try-confirm™ process is no longer
needed and the communication Lo check for match-ability is re-
placed by synchronization. If a process finds that the matching ver-
tex for vertex ¢ is vertex J, it will lock vertex J. and check whether j
has been already matched by other vertex or not. This is much eas-
ier to implement. Also, there is no need to assemble the sub-meshes
before initial partitioning. In the retinement stage, when updating
the ownership for border vertices, the shared address space enables
a decision to be made based on the accurate global view. which
helps to generate a more balanced partition. There is no explicit
data remapping process necessary for program orchestration for
CC-SAS.

Flow Solver Matrix generation is application dependent. We do
not discuss it in this extended abstract.

For the solver. we use the publicly available Aztec [2] solver,
which provides the state-of-the-art iterative methods for solving
Ax = b. The matrix A is partitioned by rows among the processes.
Each vertex in the mesh has a corresponding row in the matrix A.
The partition comes from the load balancer.

The solver has been separated into two phases: matrix trans-
form and iterative solver. In the transform stage, each process re-
orders its sub-matrix into a nearly block diagonal matrix to obtain
good data locality for the time-consuming iterative solver phase.
In MPI programs, this involves expensive hashing, searching and
broadcasting operations due to all the data lying in private address
spaces. In CC-SAS programs, a shared array is used to provide all
the information needed by the reordering. Compared with MPI,
the conceptual/orchestration complexity and programming effort
is greatly reduced. The kernel of the iterative solver is a sparse
matrix-vector multiply, which is similar across programming mod-

els except the differences of explicit message versus implicit loads/stores.

Mesh Adaptor In the mesh adaptor, all the edges are marked
first to indicate whether they need to be bisected or collapsed based
on the geometric information or error tolerance. The coarsening
is done immediately after the marking. However. mesh refinement
is delayed until after the load balancer. This delay will i)improve
the load balance since the refinement is based on the new partition,
ii)increase the data locality since the solver will work on the refined
mesh, and tii)reduce the communication volume needed for data
remapping after the repartitioning.

In CC-SAS programs, a complete shared mesh is maintained. A
potential drawback is that the shared data structures can not be eas-
ily changed without synchronization. However, the need for syn-
chronization can be dramatically reduced, often eliminated by let-
ting each process compute its number of vertices {edges.elements)
and apply the range to the global data structures in advance. This
enables it to usually modify its partition of the data structures with-
out synchronization. This increases complexity a little for the CC-
SAS programs. However, the MPI programs have to maintain a
lot of extra data structures to track data ownership and orchestrate
communication. Combining all the components of this application
together, the CC-SAS model provides substantial ease of program-
ming despite the use of similar underlying partitioning algorithms.

2.2 N-body

In CC-SAS, there is a single copy of the global octree. which is
built by having processors load their bodies concurrently into it,
using locks to synchronize as necessary. Each processor is respon-
sible for those bodies which were assigned to it in the force calcu-
lation phase in the last time step. The bodies are then partitioned
using the costzones partitioning technique [9] so that every process
has a contiguous of bodies range or zone with equal cost. Which
costzone a body belongs to is determined by the total cost up to
that body in an in-order traversal of the tree. The nodes of the tree
are efficiently ordered in Peano-Hilbert order as a result. This or-
dering assures that the contiguity in the tree always corresponds to
contiguity in space and therefore achieves good data locality.

In the MPI program, the shared Iree is no longer available. In-
stead, each process builds a locally essential tree. which includes



all the body/node data that a process will need in the later force
calculation stage. Unlike previous rescarch that builds locally es-
sential tree using an Orthogonal Recursive Bisection (ORB) par-
titioning {6. 4], we use a new method to hase it on a partitioning
scheme that is closer to the contiguous scheme used in the CC-SAS
program for direct comparability. We also imptement the ORB ver-
sion and found it to have similar performance and programming
complexities. Before building the tree, each process has to decide
which bodies belong to it. First. the whole domain is partitioned
into several sub-domains that are assigned to processes. Each pro-
cess computes the cost distribution information for the bodies in its
currently assigned subdomains. If the cost of a subdomain exceeds
a threshold this subdomain will be further subdivided. In this way
, we build a limited global tree (to a small number of levels) to
represent the cost distribution. Next, by browsing this tree, a pro-
cess can choose its subdomains according to a costzones like
method and collect bodies falling into these subdomains from all
other processes. The partitioning result should be similar to that of
the CC-SAS program, though not exactly since it partitions subdo-
main cells rather than individual bodies. After collecting its bodies,
a process first builds a local tree. Then it computes the body/node
data from its local tree that is needed by every other processes,
based on the subdomain partition information, and sends them to
their destinations. After a process receives all the body/node data
from other processes, it will add them into its local tree to generate
the locally essential tree.

We can see that building the locally essential tree is much more
complex conceptually and in orchestration than building the single
shared tree in CC-SAS, although they are based on an very similar
partitioning algorithm.

Finally we list the essential source code lines for all three mod-
els in Table |. SHMEM is very similar to MPI because the main
difference between them is the two-sided versus one-sided com-
munication. CC-SAS needs far fewer lines than MPI or SHMEM.
The difference is mainly caused by the substantial ease of program-
ming provided by CC-SAS programming model at the conceptual
and orchestration level.

Adaptive Mesh N-body
Load Balancer | Flow Solver | Mesh Adaptor | Total
MPI 5337 4615 6063 160715 1371
SHMEM 3579 4100 5906 15585 1322
CC-5AS 2563 2142 3725 8430 1065

Table !: the number of essential source code lines

3 Performance

In this section, we will analyze performance using speedups rela-
tive to the same best sequential program in all cases(for each appli-
cation) and per-process time breakdowns. The wall-clock time has
been divided into four parts in the time breakdowns: BUSY (CPU
time spent for computation), LMEM (CPU time waiting for local
cache miss), RMEM (CPU time waiting for remote cache miss) and
SYNC time (CPU time for synchronization). In CC-SAS programs,
we could not differentiate the LMEM time and RMEM time using
the available tools. We lump them together as MEM time.

3.1 Adaptive Mesh

The speedups of the entire adaptive mesh application are shown in
Figure 3. The data set size means the number of triangles in the
mesh. Figure 3 shows that all three models perform quite similarly
for smaller data sets. With the increase of data set size, CC-SAS
performs much better than the other two programming models.
The per-processor time breakdown for the largest (1.3M) data
set size is shown in Figure 4. CC-SAS has much lower BUSY
time compared with MPI and SHMEM. This is because i) the hash-
ing, searching and broadcasting used in the transformation stage in
Aztec for MPl or SHMEM are very expensive compared with the
simpler implementation of CC-SAS (using one global array). ii) in
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Figure 3: Specdups of adaptive mesh on 16. 32, and 64 processors for
different data set sizes

the data remapping stage after the partitioning, the CC-SAS pro-
gram does not need to break up and re-build the new sub-mesh as
in MPI and SHMEM, since all the processes share the single copy
of the complete mesh, and iii) in the load balancer, CC-SAS pro-
gram does not need the “try-confirm” in the coarsening phase and
the graph assembling in the initial partition phase. Among all these
reasons, the transformation stage contributes most since the solver
is the most time consuming part. Details of time and speedups
for underling phases will be included in the final paper. Thus, the
programming advantages provided at the conceptual/orchestration
level by the CC-SAS model directly lead to its better performance
for larger data sets.

Interestingly, the information needed to make the transforma-
tion stage lower-overhead for MPI and SHMEM can be easily de-
rived in the matrix generation phase. If this information is passed
from matrix generator to the solver, the performance difference be-
comes much smaller. However this will hurt the solver’s indepen-
dence of its generation. One interesting issue is how to combine
the matrix generation and flow solver together.
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Figure 4: Time breakdown for 1.3M data set size on 64 processes

Compared with MP1 or SHMEM, the CC-SAS version of the
PARMETIS partitioner itself also works fast for our application due
to its ease of programming discussed in Section 2. Figure 5 shows
the wall-clock time needed to partition the graph we used (28404
vertices) for each programming model. The more processors, the
more number of sub-meshes. Thus from 16 to 64 processors, the
time is increased. CC-SAS partitioner also generates a more bal-
anced result because in the refining stage. it can make a decision
based on the accurate global view to update the vertex's ownership.

For adaptive mesh, all programming models can get good speedups

(the parallel efficiency is above 80%). The basic parallel parti-
tioning algorithms needed for the programming models are simi-
lar. CC-SAS has substantial ease of programming compared with
MPI and SHMEM at the conceptual and orchestration level, which
translates directly into its performance advantage.
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Figure 5: The wall-clock partitioning time for a graph with 28404 vertices
on 16. 32 and 64 processors

3.2 N-body

The speedups of the N-body for these three models are shown in
Figure 6. On 16 processors, they perform similarly across all the
data sets. With the increase of number of processors, their behavior
becomes different. For 16k bodies, CC-SAS performs best while
for IM bodies, CC-SAS falls far behind MP1 and SHMEM.
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Figure 6: Speedups of N-body on 16, 32, and 64 processors for different
data sets

To understand the performance difference, we show the time
breakdowns for 16k (Figure 7) and 1 million (Figure 8) bodies on
64 processors. Figure 7 shows that the BUSY time for CC-SAS is
much lower than that for MPI or SHMEM. This is because build-
ing the locally essential tree in MP1 or SHMEM programs is much
more complex and expensive than building a single shared tree in
the CC-SAS program as we discussed in Section 2. The ease of
programming provided by the CC-SAS programming model also
brings performance advantages.
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The time breakdown for | million bodies is quite different. The
BUSY time is close to each other for all three programming models.
The extra overhead in the tree-building phase for MPl and SHMEM
is no longer important since the total execution time even in the
parallel case is dominated by force calculation. It's the MEM time
in CC-SAS that is much higher and imbalanced(see Figure 8) this
time. The reason is that during the force calculation phase, in MPI
and SHMEM programs, the force calculation is completely local
without any interprocess communication. However in CC-SAS,
the shared tree is physically scattered among all the processors.
These data do not have good spatial data locality. When a processor
reference the data in the tree, those data are often allocated in other
process’s memory. This causes a lot of TLB misses and hurts the
performance.

The problem could be improved by duplicating those remote
cells in the tree locally, especially those cells closer to the root cell
since they are most frequently referenced. The effect is similar to
building a locally essential tree, but only into a limited levels.

4 Conclusion

The performance effects of programming models for adaptive ap-
plications are not consistent. We studied this problem in a layered
approach and find that all three programming models (CC-SAS,
SHMEM, MPI) can achieve scalable performance on the state-of-
the-art multiprocessor machines. The fundamental parallel parti-
tioning algorithms to deliver the best performance for each pro-
gramming mode! are similar. However, the implementation differs
greatly, even in conceptual ways, at the orchestration level, far be-
yond the fact of using explicit messages versus implicit loads and
stores. CC-SAS provides substantial ease of programming, which
often translates to the performance gain. However, the performance
of CC-SAS may suffer from the poor spatial locality of the phys-
ically distributed shared data, in which case, some (but not all)
of the ease of programming advantages must be given up to ob-
tain comparable performance. The CC-SAS implementation of the
well-known METIS partitioner works fast than PARMETIS for our
applications. It also generates a more balanced partition because of
the more accurate global view.
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